Wednesday, July 29, 2015

File Permissions When Logging Onto AWS


When logging onto my AWS instance with the following command:

ssh -i arcgis-HGL-2.pem arcgis@52.5.49.204

I got the following error:

Dave$ ssh -i arcgis-HGL-2.pem arcgis@52.5.49.204
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@         WARNING: UNPROTECTED PRIVATE KEY FILE!          @
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
Permissions 0644 for 'arcgis-HGL-2.pem' are too open.
It is required that your private key files are NOT accessible by others.
This private key will be ignored.
bad permissions: ignore key: arcgis-HGL-2.pem

Permission denied (publickey).

The solution was:


chmod 400 arcgis-HGL-2.pem 

Tuesday, July 28, 2015

HOLLIS+ Now Has Geographic Extent


The Harvard Library Catalog now has data extent for part of the collection. This was made possible by the extensive metadata developed for the Harvard Geospatial Library.


Test it yourself here.

The map inset uses the Leaflet Javascript library.
The Harvard Map Collection published a Sea Atlas viewer. It's fun to explore. Check it out here. The map uses the Leaflet Javascript library and is placed in the public domain. See it on GitHub.


Monday, April 27, 2015

Raster Performance: OpenLayers vs. Leaflet

I'm starting to make general comparisons of the performance speed between Leaflet and OpenLayers for displaying raster data from my spatial data repository. The stack includes an ArcSDE 9.3.1 instance running on RHEL and Oracle 11g. I'm using Geoserver to hit the database and serve images as WMS requests. I've embedded two web pages here as iFrames for experimentation. Among many factors that can impact speed, embedding an API in a complex web mapping application can affect performance differently, especially when other APIs like jQuery are used in the same web space.

Leaflet:
OpenLayers

General Observations on the Two APIs


I've found Leaflet to be much easier to understand and use. It's a smaller, newer Javascript library and is more intuitive and user than OpenLayers, and I have been using OpenLayers for at least 5 years. OpenLayers is an excellent API for web mapping but I have found its syntax difficult to understand and follow. It's a very large API and implements a lot of heavy GIS functionality. That's great, but not always needed in fast web mapping scenarios. OpenLayers is not as intuitive to me, and it takes me longer to generate simple map examples in OpenLayers than it does with Leaflet, especially if I have multiple data formats and mixed projections.

iFrames created using iframe Generator Tool

Thursday, March 26, 2015

Nix Stuff I Always Forget



Bash .profile additions


Count all files in the current directory
  • alias count='ls -l | wc -l'
Count all the xml files
  • alias countxml='ls -l *.xml | wc -l'
Remove all files of type "xml" from the current directory
  • alias remallxml="find . -maxdepth 1 -name '*.xml' -delete"


"cat" files and "grep" contents while listing the name of the file (in this case "huxley")
  • cat * | grep "hux" *
More friendly size listing with ls -l
Remove all files More user friendly way to see file sizes with ls -l

  • ls -l --block-size=MB
  • du -h /folder




Plate Carree: Geoserver and ArcIMS Compatibility

Anyone trying to connect Geoserver to an ArcSDE dataset stored as (ESRI) EPSG: 54001 will quickly find that not all Plate Carree's are created equal. Geoserver does not like ESRI's choice of ellipsoid, which means tweaking the parameters slightly. 

Follow these simple steps to make EPSG:54001 operational in Geoserver.
1. Edit ../webapps/geoserver/data/user_projections/epsg.properties in your Tomcat context.
2. Add a new line at the end of the file and append the following text as 1 line. Syntax is critical.

54001= PROJCS["WGS 84 / Plate Carree", GEOGCS["WGS 84", DATUM["World Geodetic System 1984", SPHEROID["WGS 84", 6378137.0, 298.257223563, AUTHORITY["EPSG","7030"]], AUTHORITY["EPSG","6326"]], PRIMEM["Greenwich", 0.0, AUTHORITY["EPSG","8901"]], UNIT["degree", 0.017453292519943295], AXIS["Geodetic longitude", EAST], AXIS["Geodetic latitude", NORTH], AUTHORITY["EPSG","4326"]], PROJECTION["Equidistant Cylindrical (Spherical)", AUTHORITY["EPSG","9823"]], PARAMETER["central_meridian", 0.0], PARAMETER["latitude_of_origin", 0.0], PARAMETER["standard_parallel_1", 0.0],PARAMETER["false_easting", 0.0],PARAMETER["false_northing", 0.0],UNIT["m", 1.0],AXIS["Easting",EAST],AXIS["Northing", NORTH],AUTHORITY["EPSG","54001"]]

3. Restart Geoserver.
4. In your Geoserver Admin page select "Demos" and click on the "SRS List" link.
5. Search for either "54001" or "Plate Carree" and view the results.


Your projection should be in this list. Remember to keep an eye out on the Geoserver log for errors.

Generating Heat Maps for Point Data Using OpenLayers and Solr


Something that's been absent from OpenLayers for some time was a reliable and simple method of heat mapping smaller volumes ( ~25,000 records) of point data. What follows is a an example implementation that I've set up for testing purposes with the goal of integration into the Harvard Geospatial Library. The data used is a set of geotagged records from Harvard's HOLLIS catalog. While testing the heat mapping functionality could be a lot simpler by using an array of points, I chose to use data I had previously processed for another Library Project - Geotagging Catalog Records. So, I will start with an explanation of the process used to create that data source.

The records were pulled from Library Cloud using curl and saved as text files formatted as JSON.

Pulling data for "Joshua Chamberlain":


curl -v -o chamberlainandbowdoin0_end.json --basic -u xx:xx 'http://localhost:8080/solr/lccore/select?
indent=on&version=2.2&q=collection:hollis_catalog+AND+keyword:chamberlain+AND+keyword:bowdoin&start=0&rows=2
500&fl=call_num,creator,creator_exact,creator_keyword,data_source,dataset_tag,format,height,height_numeric,h
olding_libs,id,id_inst,id_isbn,id_lccn,id_oclc,keyword,language,lcsh,lcsh_exact,loc_call_num_sort_order,loc_
call_num_subject,note,note_keyword,online_avail,pages,pages_numeric,pub_date,pub_date_numeric,pub_location,p
ublisher,rsrc_key,rsrc_value,score_checkouts_undergrad,score_checkouts_grad,score_checkouts_fac,score_reserv
es,score_recalls,score_course_texts,score_holding_libs,score_extra_copies,score_total,shelfrank,sub_title,su
bject_keyword,title,title_exact,title_keyword,title_link_friendly,title_sort,toc,url,ut_count,ut_id,wp_categ
ories,wp_categories_exact,collection,520a,lcsh_keyword,score&wt=json&omitHeader=true'


The JSON output looks like this:




The JSON is then run through MetaCarta's geotagger:

geotag chamberlainandbowdoin0_end.json -d chamberlainandbowdoin0_end.tagged -e 

The output is XML and looks like this:



From here we parse the data using a ruby script and generate both XML and .csv files. We match the geotagged data with it's original input IDs to reconstruct the original Library Cloud record, adding the geotagged data to it.

The data is imported to Solr (blog post to follow) and has the following format.
















































From here we use AJAX to retrieve data from Solr and push it through OpenLayers to create a heat map. The heat map code class used can be found here.



<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>OpenLayers Heatmap Layer (using &lt;canvas&gt;)</title>
<script src="http://openlayers.org/api/OpenLayers.js" type="text/javascript"></script>
<script src="HeatmapLayer.js" type="text/javascript"></script>

</head>

<body>
    <h3>Solr Search - HEATMAP2-1</h3>

    Query: <input id="query" /> 
    <button id="search">Search</button>
    <hr/>
    <div id="map" style='height:400px;width=400' ></div>
    <hr/>
    <div id="results">
    </div>
</body>
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.4.2/jquery.min.js"></script>

<script>

 function on_search(data) {

  var query = $('#query').val();
         if (query.length == 0) {
             return;
     }

   var url = "http://sanger.hul.harvard.edu:8080/solr/ghcore/select?indent=on&version=2.2&q="+query+"&start=0&rows=9000&fl=Geocoded_Field,title,id_inst,Anchor,cLoc1,primLoc&wt=json";

   var ajaxParams = 
     {
       type: "GET",
       url: url,
       dataType: 'jsonp',
       jsonp: 'json.wrf',
           crossDomain: true,
       success: function(data){
           on_data(data);
         },
       error: function(arg){
           errorFunction(arg);
         }
     };
   $.ajax(ajaxParams);
 }

    function on_data(data) {
    

  // Remove the heat2 layer if it already exists so that they do not overlap
  if (this.map.getLayersByName("Heatmap2")[0] !== undefined)
        this.map.removeLayer(this.map.getLayersByName("Heatmap2")[0]);
      
     var heat2 = new Heatmap.Layer("Heatmap2");
     console.log(query);

        $('#results').empty();
        var docs = data.response.docs;
        var total = 'Found ' + docs.length + ' results';
        $('#results').prepend('<div>' + total + '</div>');
        
        var coordinates = [
   [ 54.7408333333,9.43472222222 ],
   [ 55.4700375,19.51416 ]
  ];
  
  $.each(docs, function(j, item) {
   //console.log(item.title+"  "+item.primLoc);
   if (item.primLoc != null) {
          var junk = item.primLoc.split(",");
          var x = parseFloat(junk[0].trim());
          var y = parseFloat(junk[1].trim());
    coordinates.push([x,y]);
   }
  });
  
  for (var latlng in coordinates) {
    var point = new Heatmap.Source(new OpenLayers.LonLat(coordinates[latlng][1], coordinates[latlng][0]));
    heat2.addSource(point);
  }
  
  heat2.defaultIntensity = 0.1;
  heat2.setOpacity(0.33);
     map.addLayer(heat2);
     map.zoomToExtent(heat2.getDataExtent());
     
}

    function on_ready() {
        $('#search').click(on_search);
        /* Hook enter to search */
        $('body').keypress(function(e) {
            if (e.keyCode == '13') {
                on_search();
            }
        });
        
  map = new OpenLayers.Map('map', {
                    controls: [
                        new OpenLayers.Control.Navigation(),
                        new OpenLayers.Control.PanZoomBar(),
                        new OpenLayers.Control.LayerSwitcher({'ascending':false}),
                        new OpenLayers.Control.MousePosition(),
                    ],
  });

  // MAP STUFF HERE - Populate an initial set to view.

    heat.addSource(new Heatmap.Source(new OpenLayers.LonLat(9.434, 54.740)));
    heat.addSource(new Heatmap.Source(new OpenLayers.LonLat(9.833, 54.219)));

  var wms = new OpenLayers.Layer.WMS("OpenLayers WMS", "http://labs.metacarta.com/wms/vmap0", {layers: 'basic'});
   layer = new OpenLayers.Layer.WMS( "OpenLayers WMS",
                    "http://vmap0.tiles.osgeo.org/wms/vmap0", {layers: 'basic'} );
  map.addLayers([layer, heat]);
  map.zoomTo(2);

    }

 var map;
 var heat = new Heatmap.Layer("Heatmap");
    $(document).ready(on_ready);
</script>

Formatting from HiLite.Me.

The result allows me to test the display of geotagged HOLLIS records based on a Solr query such as "title_key:chamberlain".




While not always available, you can try it yourself here. (http://sanger.hul.harvard.edu:8080/geohollis/heat2.html)


Next Steps



Live View: